Traits, not origin, explain impacts of plants on larval amphibians

Ecol Appl. 2012 Jan;22(1):218-28. doi: 10.1890/11-0078.1.

Abstract

Managing habitats for the benefit of native fauna is a priority for many government and private agencies. Often, these agencies view nonnative plants as a threat to wildlife habitat, and they seek to control or eradicate nonnative plant populations. However, little is known about how nonnative plant invasions impact native fauna, and it is unclear whether managing these plants actually improves habitat quality for resident animals. Here, we compared the impacts of native and nonnative wetland plants on three species of native larval amphibians; we also examined whether plant traits explain the observed impacts. Specifically, we measured plant litter quality (carbon : nitrogen : phosphorus ratios, and percentages of lignin and soluble phenolics) and biomass, along with a suite of environmental conditions known to affect larval amphibians (hydroperiod, temperature, dissolved oxygen, and pH). Hydroperiod and plant traits, notably soluble phenolics, litter C:N ratio, and litter N:P ratio, impacted the likelihood that animals metamorphosed, the number of animals that metamorphosed, and the length of larval period. As hydroperiod decreased, the likelihood that amphibians achieved metamorphosis and the percentage of tadpoles that successfully metamorphosed also decreased. Increases in soluble phenolics, litter N:P ratio, and litter C:N ratio decreased the likelihood that tadpoles achieved metamorphosis, decreased the percentage of tadpoles metamorphosing, decreased metamorph production (total metamorph biomass), and increased the length of larval period. Interestingly, we found no difference in metamorphosis rates and length of larval period between habitats dominated by native and nonnative plants. Our findings have important implications for habitat management. We suggest that to improve habitats for native fauna, managers should focus on assembling a plant community with desirable traits rather than focusing only on plant origin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anura / physiology*
  • Conservation of Natural Resources
  • Environment
  • Environmental Monitoring
  • Larva / physiology
  • Metamorphosis, Biological / physiology
  • Plants*
  • Wetlands