Understanding the low-frequency quasilocalized modes in disordered colloidal systems

Phys Rev Lett. 2012 Mar 2;108(9):095501. doi: 10.1103/PhysRevLett.108.095501. Epub 2012 Feb 27.

Abstract

In disordered colloidal systems, we experimentally measure the normal modes with the covariance matrix method and clarify the origin of low-frequency quasilocalization at the single-particle level. We observe important features from both jamming and glass simulations: There is a plateau in the density of states [D(ω)] which is suppressed upon compression, as predicted by jamming; within the same systems, we also find that the low-frequency quasilocalization originates from the large vibrations of defective structures coupled with transverse excitations, consistent with a recent glass simulation. The coexistence of these features demonstrates an experimental link between jamming and glass. Extensive simulations further show that such a structural origin of quasilocalization is universally valid for various temperatures and volume fractions.