Three-dimensional observation of SiO2 hollow spheres with a double-shell structure using aberration-corrected scanning confocal electron microscopy

J Electron Microsc (Tokyo). 2012 Jun;61(3):159-69. doi: 10.1093/jmicro/dfs039. Epub 2012 Mar 29.

Abstract

Optical sectioning using scanning confocal electron microscopy (SCEM) is a new three-dimensional (3D) imaging technique which promises improved depth resolution, particularly for laterally extended objects. Using a stage-scanning system to move the specimen in three dimensions, two-dimensional (2D) images sliced from any plane in XYZ space can be obtained in shorter acquisition times than those required for conventional electron tomography. In this paper, a double aberration-corrected SCEM used in annular dark-field mode was used to observe the 3D structure of SiO(2) hollow spheres fabricated by a carbon template method. The double-shell structure of the sample was clearly reflected in both XY- and XZ-sliced images. However, elongation along the optical axis was still evident in the XZ-sliced images even when double aberration correctors were used. Application of a deconvolution technique to the experimental XZ-sliced images reduced the elongated shell thicknesses of the SiO(2) sphere by 40-50% and the selectivity of information at a certain sample depth was also enhanced. Subsequently, 3D reconstruction by stacking the deconvoluted slice images restored the spherical surface of a SiO(2) sphere.

Publication types

  • Research Support, Non-U.S. Gov't