Measuring sidewalk distances using Google Earth

BMC Med Res Methodol. 2012 Mar 29:12:39. doi: 10.1186/1471-2288-12-39.

Abstract

Background: Physical activity is an important determinant of health. Walking is the most common physical activity performed by adults and the presence of sidewalks along roads is a determinant of walking. Geographic information systems (GIS) can be used to measure sidewalks; however, GIS sidewalk data are difficult to access. The purpose of this study was to present a new GIS method for measuring the distance and coverage of sidewalks along roadways.

Methods: The new method contains three stages. Stage 1 involves calculating the distance of all road segments within the region of interest (e.g., neighborhood), extracting geospatial information on these road segments, and saving this information as a Google Earth file. This stage was performed in ArcGIS software. Stage 2 involves opening the extracted road segment geospatial data in Google Earth, visually examining road segments to see if they contain sidewalks, and deleting road segments without sidewalks. Stage 3 involves importing the modified road geospatial data into ArcGIS and calculating the length of road segments with sidewalks. The new method was tested in 315 sites across Canada. Each site consisted of a one km radius circular buffer surrounding a school.

Results: A detailed, step-by-step protocol is provided in the paper. The length of road segments with sidewalks in the testing sites ranged from 0.00 to 55.05 km (median 16.20 km). When expressed relative to the length of all road segments, the length of road segments with sidewalks ranged from 0% to 100% (median 53%). By comparison to urban testing sites, rural sites had shorter sidewalk lengths and a smaller proportion of the roads had sidewalk coverage.

Conclusion: This study provides a new GIS protocol that researchers can use to measure the distance and coverage of sidewalks along roadways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environment Design
  • Geographic Information Systems*
  • Internet*
  • Residence Characteristics*