Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States

J Am Water Resour Assoc. 2011 Oct;47(5):1087-1109. doi: 10.1111/j.1752-1688.2011.00579.x.

Abstract

Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km(2) for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km(2) for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km(2) for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km(2) for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km(2) for the Salton Sea accounting unit.