Graphene-based frequency tripler

Nano Lett. 2012 Apr 11;12(4):2067-70. doi: 10.1021/nl300230k. Epub 2012 Mar 27.

Abstract

Graphene has captured the imagination of researchers worldwide as an ideal two-dimensional material with exceptional electrical transport properties. The high electron and hole mobility quickly inspired scientists to search for electronic applications that require high-performance channel materials. However, the absence of a bandgap in graphene immediately revealed itself in terms of ambipolar device characteristics and the nonexistence of a device off-state. The question is: How can the superior electronic properties of graphene be harvested while dealing appropriately with its unique characteristics rather than enforcing conventional device concepts? Here, we report a novel device idea, a graphene-based frequency tripler, an application that employs an innovative electrostatic doping approach and exploits the unique ambipolar behavior of graphene.