Effect of replacing calcium salts of palm oil distillate with rapeseed oil, milled or whole rapeseeds on milk fatty-acid composition in cows fed maize silage-based diets

Animal. 2009 Jul;3(7):1067-74. doi: 10.1017/S175173110900442X.

Abstract

Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content, but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 × 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C) containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100 g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100 g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100 g fatty acids, C, MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.