Robotic artificial chordal replacement for repair of mitral valve prolapse

Innovations (Phila). 2009 Jul;4(4):229-32. doi: 10.1097/IMI.0b013e3181b0aa5d.

Abstract

Artificial chordal replacement (ACR) has emerged as a superior method of mitral valve repair with excellent early and late efficacy. It is also ideal to combine with robotic techniques for correction of mitral prolapse, and this article presents a current method of robotic Gore-Tex ACR. Patients with isolated posterior leaflet prolapse are approached with the fourth-generation DaVinci robotic system and endoaortic balloon occlusion. A pledgetted anchor stitch is placed in a papillary muscle, and a 2-o Gore-Tex suture is passed through the anchor pledget. After full annuloplasty ring placement, the Gore-Tex suture is woven into the prolapsing segment and positioned temporarily with robotic forceps. Chordal length is then "adjusted" by lengthening or shortening the temporary knot over 1-cm increments as the valve is tested by injection of cold saline into the ventricle. After achieving good leaflet position and valve competence, the chord is tied permanently. The "adjustable" ACR procedure preserves leaflet surface area and produces a competent valve in the majority of patients. Postoperative transesophageal echo shows a large surface area of coaptation. Patient recovery is facilitated by the minimally invasive approach, while long-term stability of similar open ACR techniques have been excellent with a 2% to 3% failure rate over 10 years of follow-up. Robotic Gore-Tex ACR without leaflet resection is a reproducible procedure that simplifies mitral repair for prolapse. The outcomes observed in early robotic applications have been excellent. It is suggested that most patients with simple prolapse might validly be approached in this manner.