Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise

Am J Physiol Regul Integr Comp Physiol. 2012 Jun;302(11):R1351-63. doi: 10.1152/ajpregu.00702.2011. Epub 2012 Mar 14.

Abstract

In a previous report (Schier et al., Am J Physiol Regul Integr Comp Physiol 301: R1557-R1568, 2011), we demonstrated with a new behavioral procedure that rats exhibit stimulus-bound suppression of intake in response to an intraduodenal (ID) bitter tastant predicting subsequent malaise. With the use of the same modified taste aversion procedure, the present experiments evaluated whether the sweet taste properties of ID stimuli are likewise detected and encoded. Thirsty rats licked at sipper spouts for hypotonic NaCl for 30 min and received brief (first 6 min) yoked ID infusions of either the same NaCl or an isomolar lithium chloride (LiCl) solution in each session. An intestinal taste cue was mixed directly into the LiCl infusate for aversion training. Results showed that rats failed to detect intestinal sweet taste alone (20 mM Sucralose) but clearly suppressed licking in response to a nutritive sweet taste stimulus (234 mM sucrose) in the intestine that had been repeatedly paired with LiCl. Rats trained with ID sucrose in LiCl subsequently generalized responding to ID Sucralose alone at test. Replicating this, rats trained with ID Sucralose in compound with 80 mM Polycose rapidly suppressed licking to the 20 mM Sucralose alone in a later test. Furthermore, ID sweet taste signaling did not support the rapid negative feedback of sucrose or Polycose on intake when their digestion and transport were blocked. Together, these results suggest that other signaling pathways and/or transporters engaged by caloric carbohydrate stimuli potentiate detection of sweet taste signals in the intestine.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Behavior, Animal / drug effects*
  • Behavior, Animal / physiology
  • Carbohydrates / pharmacology*
  • Feeding Behavior / drug effects*
  • Feeding Behavior / physiology
  • Intestines / drug effects
  • Intestines / physiology
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Sodium Chloride / pharmacology
  • Stomach / drug effects
  • Stomach / physiology
  • Sucrose / pharmacology
  • Sweetening Agents / pharmacology*
  • Taste / physiology*

Substances

  • Carbohydrates
  • Sweetening Agents
  • Sodium Chloride
  • Sucrose