Transition metal surface passivation induced graphene edge reconstruction

J Am Chem Soc. 2012 Apr 11;134(14):6204-9. doi: 10.1021/ja2104119. Epub 2012 Mar 28.

Abstract

In vacuum, the bare zigzag (zz) edge of graphene is reconstructed into a line of pentagon-heptagon pairs, while the pristine armchair (ac) edge is retained. Our first-principle explorations of graphene edges on three metal surfaces [Cu(111), Co(111), and Ni(111)] indicate an opposite tendency, that is, the pristine zz edge is energetically favorable and the reconstructed ac edge with dangling C atoms is highly stable on Co(111) and Ni(111) surfaces. Insightful analysis shows that passivation of the graphene edge by metal surfaces is responsible for the dramatic differences. Beyond this, the unique edge configuration has a significant impact on the graphene CVD growth behavior.