A compact model for multi-island single electron transistors

J Nanosci Nanotechnol. 2011 Dec;11(12):11124-7. doi: 10.1166/jnn.2011.3984.

Abstract

Multi-island single electron transistor is an important kind of the single electron transistor, which is convenient to realize the controllable room temperature operation. A novel semi-empirical compact model for the Multi-island single electron transistor is proposed. The new approach combines the orthodox theory of the single electron tunneling through single coulomb island and a novel empirical analysis procedure for the chain of multi coulomb islands to solve the current of the whole multi-island single electron transistor. The tunneling rates are calculated based on the orthodox theory for the single electron tunneling. The tunneling currents representing the first splitted peaks in the coulomb oscillation curves are calculated according to the assumption that the currents through all the coulomb islands are equal to each other at the stable states, while the currents representing the other splitted peaks are constructed and merged together according to the empirical analysis. The model is verified by the traditional SET simulator SIMON and shows much faster calculation speed than SIMON. Therefore, the novel compact model is suitable for the large scale MISET circuit simulation.