Characterization of the ABA signal transduction pathway in Vitis vinifera

Plant Sci. 2012 May:187:89-96. doi: 10.1016/j.plantsci.2012.01.015. Epub 2012 Feb 4.

Abstract

The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / genetics*
  • Abscisic Acid / metabolism
  • Abscisic Acid / pharmacology
  • Adaptation, Physiological / genetics*
  • Basic-Leucine Zipper Transcription Factors / genetics
  • Basic-Leucine Zipper Transcription Factors / metabolism
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Gene Expression*
  • Genes, Plant*
  • Plant Growth Regulators / genetics
  • Plant Growth Regulators / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Stomata / physiology*
  • Signal Transduction / genetics
  • Stress, Physiological / genetics*
  • Two-Hybrid System Techniques
  • Vitis / genetics*
  • Vitis / metabolism

Substances

  • Basic-Leucine Zipper Transcription Factors
  • Plant Growth Regulators
  • Plant Proteins
  • Abscisic Acid