One-step synthesis of stoichiometric Cu2ZnSnSe4 as counter electrode for dye-sensitized solar cells

ACS Appl Mater Interfaces. 2012 Mar;4(3):1796-802. doi: 10.1021/am3000616. Epub 2012 Mar 12.

Abstract

Cu(2)ZnSnSe(4) (CZTSe) nanoparticles with diameters of 200-300 nm were synthesized by one-step solvothermal method without surfactants or templates. The structure, composition and morphology of CZTSe nanoparticles were characterized by XRD, XPS, Raman spectrum, EDS, FESEM and TEM. The results indicated that the nanoparticles were single phase and nearly stoichiometric composition. CZTSe nanoparticles drop-casted onto FTO substrate were used as counter electrode (CE) in dye-sensitized solar cells (DSSCs) for the first time, which exhibited Pt-like electrocatalytic activity for the reduction of I(3)(-) to I(-) in DSSCs. The J-V results demonstrated that the thickness of the film affected the photocurrent density and fill factor remarkably, which resulted from the difference of electrocatalytic sites and resistance with different thickness films. And a best efficiency of 3.85% was obtained by adjusting the film thickness. The work presents a new approach for developing low-cost, facile fabrication CZTSe nanoparticles, and demonstrates CZTSe can be explored as a low-cost alternative for expensive and scare Pt in DSSCs.

Publication types

  • Research Support, Non-U.S. Gov't