Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids

Chem Phys Lipids. 2012 May;165(4):462-74. doi: 10.1016/j.chemphyslip.2012.02.006. Epub 2012 Feb 23.

Abstract

Sphingolipid metabolites have become recognized for their participation in cell functions and signaling events that control a wide array of cellular activities. Two main sphingolipids, ceramide and sphingosine-1-phosphate, are involved in signaling pathways that regulate cell proliferation, apoptosis, motility, differentiation, angiogenesis, stress responses, protein synthesis, carbohydrate metabolism, and intracellular trafficking. Ceramide and S1P often exert opposing effects on cell survival, ceramide being pro-apoptotic and S1P generally promoting cell survival. Therefore, the conversion of one of these metabolites to the other by sphingolipid enzymes provides a vast network of regulation and provides a useful therapeutic target. Here we provide a survey of the current knowledge of the roles of sphingolipid metabolites in cancer and in lipid storage disease. We review our attempts to interfere with this network of regulation and so provide new treatments for a range of diseases. We synthesized novel analogs of sphingolipids which inhibit the hydrolysis of ceramide or its conversion to more complex sphingolipids. These analogs caused elevation of ceramide levels, leading to apoptosis of a variety of cancer cells. Administration of a synthetic analog to tumor-bearing mice resulted in reduction and even disappearance of the tumors. Therapies for sphingolipid storage diseases, such as Niemann-Pick and Gaucher diseases were achieved by two different strategies: inhibition of the biosynthesis of the substrate (substrate reduction therapy) and protection of the mutated enzyme (chaperone therapy). Sphingolipid metabolism was monitored by the use of novel fluorescent sphingolipid analogs. The results described in this review indicate that our synthetic analogs could be developed both as anticancer drugs and for the treatment of sphingolipid storage diseases.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use*
  • Ceramides / metabolism
  • Drug Discovery / methods
  • Humans
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism
  • Sphingolipidoses / drug therapy*
  • Sphingolipidoses / metabolism
  • Sphingolipids / chemistry*
  • Sphingolipids / pharmacology
  • Sphingolipids / therapeutic use*

Substances

  • Antineoplastic Agents
  • Ceramides
  • Sphingolipids