Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz

Nanotechnology. 2012 Mar 16;23(10):105607. doi: 10.1088/0957-4484/23/10/105607. Epub 2012 Feb 24.

Abstract

The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900 °C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60 min at 900 °C produced a reduction of nanoparticle diameter from 2.6 to 1.8 nm and a decrease in the mean tube diameter from 1.2 to 0.8 nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.

Publication types

  • Research Support, Non-U.S. Gov't