Acoustic breath-phase detection using tracheal breath sounds

Med Biol Eng Comput. 2012 Mar;50(3):297-308. doi: 10.1007/s11517-012-0869-9. Epub 2012 Feb 24.

Abstract

Current breathing flow estimation methods use tracheal breath sounds, but one step of the process, 'breath phase (inspiration/expiration) detection', is done by either assuming alternating breath phases or using a second acoustic channel of lung sounds. The alternating assumption is unreliable for long recordings, non-breathing events, such as apnea, swallow or cough change the alternating nature of the phases. Using lung sounds intensity requires the addition of a secondary channel and the associated labor. Hence, an automatic and accurate method for breath-phase detection using only tracheal sounds would be of great benefit. We present a method using several breath sound parameters to differentiate between the two respiratory phases. The proposed method is novel and independent of flow level; it requires only one prior- and one post-breath sound segment to identify the phase. The proposed method was tested on data from 93 healthy individuals, without any history of pulmonary diseases breathing at 4 different flow levels. The most prominent features were from the duration, volume and shape of the sound envelope. This method has shown an accuracy of 95.6% with 95.5% sensitivity and 95.6% specificity for breath-phase identification without assuming breath-phase-alteration and/or using any other information.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Female
  • Humans
  • Male
  • Middle Aged
  • Respiratory Mechanics / physiology
  • Respiratory Sounds / physiology*
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted
  • Sound Spectrography / methods
  • Trachea / physiology*
  • Young Adult