Uranium and thorium hydride complexes as multielectron reductants: a combined neutron diffraction and quantum chemical study

Inorg Chem. 2012 Mar 19;51(6):3613-24. doi: 10.1021/ic202503h. Epub 2012 Feb 24.

Abstract

The unusual uranium reaction system in which uranium(4+) and uranium(3+) hydrides interconvert by formal bimetallic reductive elimination and oxidative addition reactions, [(C(5)Me(5))(2)UH(2)](2) (1) ⇌ [(C(5)Me(5))(2)UH](2) (2) + H(2), was studied by employing multiconfigurational quantum chemical and density functional theory methods. 1 can act as a formal four-electron reductant, releasing H(2) gas as the byproduct of four H(2)/H(-) redox couples. The calculated structures for both reactants and products are in good agreement with the X-ray diffraction data on 2 and 1 and the neutron diffraction data on 1 obtained under H(2) pressure as part of this study. The interconversion of the uranium(4+) and uranium(3+) hydride species was calculated to be near thermoneutral (~-2 kcal/mol). Comparison with the unknown thorium analogue, [(C(5)Me(5))(2)ThH](2), shows that the thorium(4+) to thorium(3+) hydride interconversion reaction is endothermic by 26 kcal/mol.