Organization of actin cytoskeleton during meiosis I in a wheat thermo-sensitive genic male sterile line

Protoplasma. 2013 Feb;250(1):415-22. doi: 10.1007/s00709-012-0386-6. Epub 2012 Feb 16.

Abstract

BS366 is a thermo-sensitive male sterile line of wheat (Triticum aestivum L.) for two-line hybrid breeding, which exhibits aberrant meiotic cytokinesis under low temperature. Through transcriptome analysis, a possible regulatory role for plant actin cytoskeleton was suggested. However, the organization of actin cytoskeleton in meiosis has been poorly understood so far. Here, fixed microsporocytes during meiosis were labeled with tetramethylrhodamine isothiocyanate-phalloidin and 4',6-diamidino-2-phenylindole. Quantities of fluorescent micrographs were captured using a confocal microscope, including the transient state from metaphase to telophase. We observed that actin filaments were abundant in typical kariokinetic spindle, central spindle (parallel microtubules or actin fibers between two separated chromosomes in anaphase), and phragmoplast. Interestingly, we identified the Chinese lantern-shaped actin phragmoplast in wheat meiosis for the first time. Under low temperature, phragmoplast actin filaments were chaotic and normal cell plate failed to form. These data provide new insights into the organization of actin filaments during male meiosis of plant and support a role of actin cytoskeleton in bringing about thermo-sensitive male sterility in wheat.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / genetics
  • Actin Cytoskeleton / metabolism*
  • Breeding
  • Fertility
  • Genome, Plant
  • Meiosis / physiology*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Triticum / cytology*
  • Triticum / genetics
  • Triticum / metabolism*

Substances

  • Plant Proteins