Liquid metal-based plasmonics

Opt Express. 2012 Jan 30;20(3):2346-53. doi: 10.1364/OE.20.002346.

Abstract

We demonstrate that liquid metals support surface plasmon-polaritons (SPPs) at terahertz (THz) frequencies, and can thus serve as an attractive material system for a wide variety of plasmonic and metamaterial applications. We use eutectic gallium indium (EGaIn) as the liquid metal injected into a polydimethylsiloxane (PDMS) mold fabricated by soft lithography techniques. Using this approach, we observe enhanced THz transmission through a periodic array of subwavelength apertures. Despite of the fact that the DC conductivity of EGaIn is an order of magnitude smaller than many conventional metals, we clearly observe well-defined transmission resonances. This represents a first step in developing reconfigurable and tunable plasmonic devices that build upon well-developed microfluidic capabilities.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gallium / chemistry*
  • Indium / chemistry*
  • Lenses*
  • Solutions / chemistry*
  • Surface Plasmon Resonance / methods*

Substances

  • Solutions
  • Indium
  • Gallium