Genome affinity and meiotic behaviour in trigenomic hybrids and their doubled allohexaploids between three cultivated Brassica allotetraploids and Brassica fruticulosa

Genome. 2012 Feb;55(2):164-71. doi: 10.1139/g11-087.

Abstract

The wild species Brassica fruticulosa Cyr. (FF, 2n = 16) is closely related to the cultivated Brassica species.Through interspecific reciprocal crosses between B. fruticulosa and three cultivated Brassica allotetraploids (AABB, AACC,and BBCC where A = 10, B = 8, and C = 9), four trigenomic hybrids (F.AC, 2n = 27; F.AB, 2n = 26; F.BC, 2n = 25;BC.F, 2n = 25) were produced. By chromosome doubling of respective hybrids, three allohexaploids (FF.AACC, 2n = 54;FF.AABB, 2n = 52; BBCC.FF, 2n = 50) were synthesized. In pollen mother cells (PMCs) of the trigenomic hybrids, 1–2 autosyndetic bivalents were detected within A, B, and C genomes but only one within F genome; 1–3 allosyndetic bivalents between any two genomes were observed, and a closer relationship of F and B genomes than F and A genomes or F and C genomes was revealed. The all ohexaploids showed a generally low but different pollen fertilities. The chromosomes in PMCs were predominantly paired as bivalents but some univalents and multivalents at variable frequencies were observed.The bivalents of homologous pairing for each genome prevailed, but all osyndetic quadrivalents and hexavalents involving any two genomes were observed, together with autosyndetic quadrivalents for A, B, and C genomes but not the F genome.The nondiploidized cytological behaviour of these allohexaploids contributed to their low fertility. The relationships between the genome affinity and meiotic behavior in these allohexaploids were discussed.

MeSH terms

  • Brassica / genetics*
  • Chimera / genetics
  • Chromosome Pairing / genetics
  • Chromosome Segregation / genetics
  • Crosses, Genetic
  • Fertility / genetics
  • Genome, Plant*
  • Meiosis / genetics*
  • Pollen / genetics*
  • Pollination / genetics*
  • Tetraploidy*