Technical note: spatial resolution of proton tomography: impact of air gap between patient and detector

Med Phys. 2012 Feb;39(2):798-800. doi: 10.1118/1.3676739.

Abstract

Purpose: Proton radiography and tomography were investigated since the early 1970s because of its low radiation dose, high density resolution, and ability to image directly proton stopping power. However, spatial resolution is still a limiting factor. In this note, preliminary results of the impact of an air gap between detector system and patient on spatial resolution are presented.

Methods: Spatial resolution of proton radiography and tomography is governed by multiple Coulomb scattering (MCS) of the protons in the patient. In this note, the authors employ Monte Carlo simulations of protons traversing a 20 cm thick water box. Entrance and exit proton coordinate measurements were simulated for improved spatial resolution. The simulations were performed with and without a 5 cm air gap in front of and behind the patient. Loss of spatial resolution due to the air gap was studied for protons with different initial angular confusion.

Results: It was found that spatial resolution is significantly deteriorated when a 5 cm air gap between the position sensitive detector and the patient is included. For a perfect parallel beam spatial resolution worsens by about 40%. Spatial resolution is getting worse with increasing angular confusion and can reach 80%.

Conclusions: When proton radiographies are produced by measuring the entrance and exit coordinates of the protons in front of and behind the patient the air gap between the detector and the patient can significantly deteriorate the spatial resolution of the system by up to 80%. An alternative would be to measure in addition to the coordinates also the exit and entrance angles of each proton. In principle, using the air gap size and proton angle, images can be reconstructed with the same spatial resolution than without air gap.

MeSH terms

  • Air
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Protons*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography / methods*

Substances

  • Protons