The polyamine inhibitor alpha-difluoromethylornithine modulates hippocampus-dependent function after single and combined injuries

PLoS One. 2012;7(1):e31094. doi: 10.1371/journal.pone.0031094. Epub 2012 Jan 27.

Abstract

Exposure to uncontrolled irradiation in a radiologic terrorism scenario, a natural disaster or a nuclear battlefield, will likely be concomitantly superimposed on other types of injury, such as trauma. In the central nervous system, radiation combined injury (RCI) involving irradiation and traumatic brain injury may have a multifaceted character. This may entail cellular and molecular changes that are associated with cognitive performance, including changes in neurogenesis and the expression of the plasticity-related immediate early gene Arc. Because traumatic stimuli initiate a characteristic early increase in polyamine metabolism, we hypothesized that treatment with the polyamine inhibitor alpha-difluoromethylornithine (DFMO) would reduce the adverse effects of single or combined injury on hippocampus structure and function. Hippocampal dependent cognitive impairments were quantified with the Morris water maze and showed that DFMO effectively reversed cognitive impairments after all injuries, particularly traumatic brain injury. Similar results were seen with respect to the expression of Arc protein, but not neurogenesis. Given that polyamines have been found to modulate inflammatory responses in the brain we also assessed the numbers of total and newly born activated microglia, and found reduced numbers of newly born cells. While the mechanisms responsible for the improvement in cognition after DFMO treatment are not yet clear, the present study provides new and compelling data regarding the potential use of DFMO as a potential countermeasure against the adverse effects of single or combined injury.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Brain Injuries / drug therapy
  • Brain Injuries / physiopathology*
  • Cognition / drug effects
  • Cognition / physiology
  • Cognition / radiation effects
  • Cognition Disorders / physiopathology
  • Cognition Disorders / prevention & control
  • Eflornithine / pharmacology*
  • Eflornithine / therapeutic use
  • Enzyme Inhibitors / pharmacology
  • Hippocampus / drug effects*
  • Hippocampus / physiology*
  • Hippocampus / radiation effects
  • Maze Learning / drug effects
  • Memory / drug effects
  • Memory / physiology
  • Memory / radiation effects
  • Mice
  • Mice, Inbred C57BL
  • Polyamines / antagonists & inhibitors
  • Spatial Behavior / drug effects
  • Spatial Behavior / radiation effects
  • Swimming / physiology
  • Whole-Body Irradiation

Substances

  • Enzyme Inhibitors
  • Polyamines
  • Eflornithine