N-glycans of SREC-I (scavenger receptor expressed by endothelial cells): essential role for ligand binding, trafficking and stability

Glycobiology. 2012 May;22(5):714-24. doi: 10.1093/glycob/cws010. Epub 2012 Jan 25.

Abstract

Scavenger receptor expressed by endothelial cells (SREC-I) mediates the endocytosis of chemically modified lipoproteins such as acetylated low-density lipoprotein (Ac-LDL) and oxidized LDL and is implicated in atherogenesis. We produced recombinant SREC-I in Chinese hamster ovary-K1 cells and identified three potential glycosylation sites, Asn(289), Asn(382) and Asn(393), which were all glycosylated. To determine the function of N-glycans in SREC-I, we characterized SREC-I mutant proteins by intracellular distribution and the cellular incorporation rate of Ac-LDL. N382Q/N393Q and N289Q/N382Q/N393Q were sequestered in the endoplasmic reticulum, resulting in a severe reduction in the cellular incorporation of Ac-LDL. N382Q showed a normal cell surface residency and an enhanced affinity for Ac-LDL, resulting in an elevated Ac-LDL cellular incorporation. These results indicate that the N-glycan of Asn(393) regulates the intracellular sorting of SREC-I and that the N-glycan of Asn(382) controls ligand-binding affinity. Furthermore, we detected an enhanced trypsin sensitivity of the N289Q. Glycan structure analyses revealed that the core-fucosylated bi-antennary is the common major structure at all glycosylation sites. In addition, tri- and tetra-antennary were detected as minor constituents at Asn(289). A bisecting GlcNAc was also detected at Asn(382) and Asn(393). Structural analyses and homology modeling of SREC-I suggest that the N-glycan bearing a β1-6GlcNAc branch at Asn(289) protects from proteinase attack and thus confers a higher stability on SREC-I. These data indicate that Asn(289)-, Asn(382)- and Asn(393)-linked N-glycans of SREC-I have distinct functions in regulating proteolytic resistance, ligand-binding affinity and subcellular localization, all of which might be involved in the development of atherogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • DNA Primers
  • Humans
  • Kinetics
  • Ligands
  • Polymerase Chain Reaction
  • Polysaccharides / metabolism*
  • Protein Binding
  • Protein Transport
  • Scavenger Receptors, Class F / metabolism*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Substances

  • DNA Primers
  • Ligands
  • Polysaccharides
  • SCARF1 protein, human
  • Scavenger Receptors, Class F