Brain viscoelasticity alteration in chronic-progressive multiple sclerosis

PLoS One. 2012;7(1):e29888. doi: 10.1371/journal.pone.0029888. Epub 2012 Jan 20.

Abstract

Introduction: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE) is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS) is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS.

Methods: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS.

Results: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001).

Conclusions: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / pathology*
  • Brain / physiopathology*
  • Elasticity / physiology
  • Elasticity Imaging Techniques
  • Female
  • Humans
  • Male
  • Middle Aged
  • Multiple Sclerosis, Chronic Progressive / pathology*
  • Viscosity