An exactly solvable model for the integrability-chaos transition in rough quantum billiards

Nat Commun. 2012 Jan 24:3:641. doi: 10.1038/ncomms1653.

Abstract

A central question of dynamics, largely open in the quantum case, is to what extent it erases a system's memory of its initial properties. Here we present a simple statistically solvable quantum model describing this memory loss across an integrability-chaos transition under a perturbation obeying no selection rules. From the perspective of quantum localization-delocalization on the lattice of quantum numbers, we are dealing with a situation where every lattice site is coupled to every other site with the same strength, on average. The model also rigorously justifies a similar set of relationships, recently proposed in the context of two short-range-interacting ultracold atoms in a harmonic waveguide. Application of our model to an ensemble of uncorrelated impurities on a rectangular lattice gives good agreement with ab initio numerics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.