Enzyme-responsive nanoparticles for drug release and diagnostics

Adv Drug Deliv Rev. 2012 Aug;64(11):967-78. doi: 10.1016/j.addr.2012.01.002. Epub 2012 Jan 14.

Abstract

Enzymes are key components of the bionanotechnology toolbox that possess exceptional biorecognition capabilities and outstanding catalytic properties. When combined with the unique physical properties of nanomaterials, the resulting enzyme-responsive nanoparticles can be designed to perform functions efficiently and with high specificity for the triggering stimulus. This powerful concept has been successfully applied to the fabrication of drug delivery schemes where the tissue of interest is targeted via release of cargo triggered by the biocatalytic action of an enzyme. Moreover, the chemical transformation of the carrier by the enzyme can also generate therapeutic molecules, therefore paving the way to design multimodal nanomedicines with synergistic effects. Dysregulation of enzymatic activity has been observed in a number of severe pathological conditions, and this observation is useful not only to program drug delivery in vivo but also to fabricate ultrasensitive sensors for diagnosing these diseases. In this review, several enzyme-responsive nanomaterials such as polymer-based nanoparticles, liposomes, gold nanoparticles and quantum dots are introduced, and the modulation of their physicochemical properties by enzymatic activity emphasized. When known, toxicological issues related to the utilization nanomaterials are highlighted. Key examples of enzyme-responsive nanomaterials for drug delivery and diagnostics are presented, classified by the type of effector biomolecule, including hydrolases such as proteases, lipases and glycosidases, and oxidoreductases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Diagnostic Imaging / methods
  • Drug Delivery Systems*
  • Hydrolases / metabolism*
  • Nanoparticles*
  • Pharmaceutical Preparations / metabolism

Substances

  • Pharmaceutical Preparations
  • Hydrolases