Fusion with language models improves spelling accuracy for ERP-based brain computer interface spellers

Annu Int Conf IEEE Eng Med Biol Soc. 2011:2011:5774-7. doi: 10.1109/IEMBS.2011.6091429.

Abstract

Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / physiology*
  • Computer Simulation
  • Electroencephalography / methods
  • Evoked Potentials, Visual / physiology*
  • Humans
  • Language*
  • Models, Theoretical
  • Natural Language Processing*
  • Task Performance and Analysis*
  • User-Computer Interface*
  • Writing*