Quantum Hall superfluids in topological insulator thin films

Phys Rev Lett. 2011 Dec 9;107(24):246401. doi: 10.1103/PhysRevLett.107.246401. Epub 2011 Dec 7.

Abstract

Three-dimensional topological insulators have protected Dirac-cone surface states. In this Letter we argue that gapped excitonic superfluids with spontaneous coherence between top and bottom surfaces can occur in the topological insulator (TI)-thin-film quantum Hall regime. We find that the large dielectric constants of TI materials increase the layer separation range over which coherence survives and decrease the superfluid sound velocity, but have little influence on the superfluid density or on the charge gap. The coherent state at total Landau-level filling factor νT=0 is predicted to be free of edge modes, qualitatively altering its transport phenomenology compared to the widely studied case of νT=1 in GaAs double-quantum wells.