Association of PAX2 with cell apoptosis in unilateral ureteral obstruction rats

Ren Fail. 2012;34(2):194-202. doi: 10.3109/0886022X.2011.643364. Epub 2012 Jan 9.

Abstract

Renal interstitial fibrosis (RIF) is the final common pathway for chronic kidney disease. Cell apoptosis is a critical detrimental event that leads to renal fibrosis. Paired box 2 (PAX2) plays a major role in the development of the kidney. This study was performed to investigate whether PAX2 was associated with cell apoptosis in the progression of RIF in unilateral ureteral obstruction (UUO) rats. Eighty Wistar male rats were divided into two groups randomly: sham operation group (SHO) and model group subjected to UUO (GU), n = 40, respectively. The model was established by left ureteral ligation. Renal tissues were collected 14 and 28 days after surgery. Protein expressions of PAX2, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), collagen-IV (Col-IV), fibronectin (FN), and caspase-3 were detected using immunohistochemical analysis; mRNA expression of PAX2 in renal tissue was detected by real-time reverse transcription polymerase chain reaction; and RIF index and cell apoptosis index in renal interstitium were also calculated. When compared with those in the SHO group, expressions of PAX2 (protein and mRNA) were markedly increased in the GU group (each p < 0.01). Protein expressions of TGF-β1, α-SMA, Col-IV, FN, and caspase-3 and RIF index and cell apoptosis index in the GU group were remarkably increased when compared with those in the SHO group (each p < 0.01). The protein expression of PAX2 was positively correlated with the protein expressions of TGF-β1, α-SMA, Col-IV, FN, and caspase-3 and with RIF index and cell apoptosis index (all p < 0.01). The apoptotic cell in our observation was mainly derived from renal tubular epithelial cells. In conclusion, the increased expression of PAX2 is associated with cell apoptosis in the progression of RIF in UUO rats, suggesting that PAX2 is a potentially therapeutic target for prevention of RIF. Tian-Biao Zhou and Yuan-Han Qin wish it to be known that, in their opinion, they should be regarded as joint first authors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology*
  • Fibrosis / etiology
  • Kidney / pathology*
  • Male
  • PAX2 Transcription Factor / physiology*
  • Rats
  • Rats, Wistar
  • Ureteral Obstruction / etiology*

Substances

  • PAX2 Transcription Factor
  • PAX2 protein, rat