Short-term effects of diesel fuel on rhizosphere microbial community structure of native plants in Yangtze estuarine wetland

Environ Sci Pollut Res Int. 2012 Jul;19(6):2179-85. doi: 10.1007/s11356-011-0720-0. Epub 2012 Jan 7.

Abstract

Purpose: In this work, short-term effects of diesel fuel on Huangpu-Yangtze estuarine wetland soil microbial community structure were studied under simulated conditions through phospholipid fatty acids (PLFAs) analysis. Four native plant species, bulrush (Scirpus tripueter), galingale (Cyperus rotundus), wildrice (Zizania latifolia), and reed (Phragmites australis) were tested in the experiments.

Method: In the pot experiment, 20 g rhizosphere soils were mixed with 20 g diesel-blended soils. The concentration of total petroleum hydrocarbon was 16,000 mg/kg. All pots were incubated for 14 days in dark at 28°C and watered with 12 mL sterile distilled water to keep a liquid level. Microbial activity of the samples was assessed by hydrolysis of fluorescein diacetate. Measurements of soil PLFAs and analysis on gas chromatography were performed.

Results: The microbial activity in the samples of reed was highest after the exposure. In all samples, the common PLFA was straight-chain saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA). After the exposure the relative abundance of MUFA and polyunsaturated fatty acid decreased by 20%, and the relative abundance of straight-chain SFA increased by 20%. The results of diversity and PCA indicated that the effect of diesel pollutant on the microbial community was far stronger than the root effect and the reed roots enhanced the tolerance of soil microorganisms to diesel significantly.

Conclusions: All results showed that the soil microbial community structure differed significantly with the exposure to diesel. In reed rhizosphere, the soil microorganisms exhibited a strong resistance to diesel fuel. It confirmed that the root of reed improved the biodegradation ability of soil microorganisms for diesel pollutants and they could be reasonably matched to cure and restore the ecological environment of oil-contaminated wetlands.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Cyperus / drug effects
  • Gasoline / toxicity*
  • Plants / drug effects*
  • Plants / microbiology
  • Poaceae / drug effects
  • Rhizosphere*
  • Soil Microbiology
  • Wetlands

Substances

  • Gasoline