The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility

Vascul Pharmacol. 2012 Mar-Apr;56(3-4):142-9. doi: 10.1016/j.vph.2011.12.005. Epub 2011 Dec 29.

Abstract

It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta, Thoracic / metabolism*
  • Aorta, Thoracic / pathology
  • Aorta, Thoracic / physiopathology
  • Aorta, Thoracic / radiation effects
  • Blood Pressure / radiation effects
  • Cells, Cultured
  • Gamma Rays / adverse effects
  • Gene Expression Regulation / radiation effects
  • Gene Silencing
  • Hypertension / etiology*
  • Hypertension / metabolism*
  • Hypertension / physiopathology
  • In Vitro Techniques
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits / antagonists & inhibitors
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits / genetics
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits / metabolism
  • Large-Conductance Calcium-Activated Potassium Channels / antagonists & inhibitors*
  • Large-Conductance Calcium-Activated Potassium Channels / genetics
  • Large-Conductance Calcium-Activated Potassium Channels / metabolism
  • Male
  • Muscle, Smooth, Vascular / metabolism*
  • Muscle, Smooth, Vascular / pathology
  • Muscle, Smooth, Vascular / physiopathology
  • Muscle, Smooth, Vascular / radiation effects
  • Norepinephrine / metabolism
  • Potassium Channel Blockers / pharmacology
  • Potassium Channels / chemistry
  • Potassium Channels / genetics
  • Potassium Channels / metabolism
  • RNA, Messenger / metabolism
  • Radiation Injuries / physiopathology*
  • Rats
  • Rats, Wistar
  • Vasoconstriction* / drug effects

Substances

  • Kcnma1 protein, rat
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits
  • Large-Conductance Calcium-Activated Potassium Channels
  • Potassium Channel Blockers
  • Potassium Channels
  • RNA, Messenger
  • Norepinephrine