Synthesis of current data for Hg in areas of geologic resource extraction contamination and aquatic systems in China

Sci Total Environ. 2012 Apr 1:421-422:59-72. doi: 10.1016/j.scitotenv.2011.09.024. Epub 2012 Jan 4.

Abstract

China has become the largest contributor of anthropogenic atmospheric mercury (Hg) in the world owing to its fast growing economy and the largest of populations. Over the last two decades, Hg has become of increasing environmental concern in China and much has been published on its distribution, transportation, methylation, and bioaccumulation in aquatic systems and areas of geologic resource extraction contaminated sites, such as coal-fired power plants, non-ferrous smelters, Hg mining and retorting sites, Au amalgam, landfills, chemical plants, etc.. Environmental compartments, like soil, water, air, and crop from areas of geologic resource extraction contamination, especially from Hg mining regions, exhibit elevated values of total-Hg and MMHg. Risk assessments indicate that the consumption of rice, which has a high bioaccumulation of MMHg, has become the dominant pathway of MMHg exposure of inhabitants living in Hg mining areas. Low concentrations less than 5ngl(-1) in total-Hg can be observed in rivers from remote areas, however, high concentrations that reached 1600ngl(-1) in total-Hg can be found in rivers from industrial and urban areas. The studies of hydropower reservoirs of southwest China indicated the old reservoirs act as net sinks for total-Hg and net sources of MMHg, while newly established ones act as net sinks for both total-Hg and MMHg, which is in sharp contrast to the evolution of biomethylation in reservoirs established in the boreal belt of North America and Eurasia. Fish from those reservoirs have relatively low levels of total-Hg, which do not exceed the maximum total-Hg limit of 0.5mgkg(-1) recommended by WHO. Currently, however, there is still a large data gap regarding Hg even in the areas mentioned above in China, which results in poor understanding of its environmental biogeochemistry. Moreover, for a better understanding of human and environmental health effects caused by the fast growing economy, long-term Hg monitoring campaigns are urgently needed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • China
  • Environmental Health
  • Environmental Monitoring*
  • Environmental Pollutants / analysis*
  • Humans
  • Mercury / analysis*
  • Mining*
  • Rivers / chemistry*
  • Water Pollutants, Chemical / analysis

Substances

  • Environmental Pollutants
  • Water Pollutants, Chemical
  • Mercury