Some cyclization reactions of 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one: preparation and computational analysis of non symmetrical zwitterionic biscyanines

Org Biomol Chem. 2012 Feb 21;10(7):1339-48. doi: 10.1039/c1ob06622f. Epub 2012 Jan 4.

Abstract

Regioselective nucleophilic addition of bisnucleophiles 1,2-benzenediamine, 2-amino-benzenethiol, and N-phenyl-1,2-benzenediamine to 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1) at C6 followed by intramolecular cyclocondensation at the C7 carbonyl afforded highly coloured tetracenes 1,3-diphenyl-1,6-dihydro-[1,2,4]triazino[5,6-b]phenazin-4-ium 4-methylbenzenesulfonate (12), 1,3-diphenyl-1H-[1,2,4]triazino[6,5-b]phenothiazine (14) and 1,3,11-triphenyl-1,6-dihydro-[1,2,4]triazino[5,6-b]phenazin-11-ium 4-methylbenzenesulfonate (15), respectively. Neutralization of the latter with alkali gave the free base 1,3,11-triphenyl-1H-[1,2,4]triazino[5,6-b]phenazin-11-ium-6-ide (16). Furthermore, the benzotriazinone 1 reacts with dimethyl malonate to give 6-(methoxycarbonyl)-7-oxo-1,3-diphenyl-7H-benzofuro[5,6-e][1,2,4]triazin-1-ium-4-ide (17) in 74% yield, while with S(4)N(4) [5,6-c]-thiadiazolo-7-oxo-1,3-diphenyl-1,2,4-benzotriazine (22) was formed in 15% yield. The free bases 16 and 17 display negative solvatochromism, which supports charge separated ground states similar to those of zwitterionic biscyanines, and DFT calculations at the UB3LYP/6-31G(d) level afford ΔE(ST) values of -13.6 and -18.7 kcal mol(-1), respectively that strongly favour the singlet ground state. All ring systems described are new and fully characterized.