P=C bonds as building blocks for three- and four-membered heterocyclic cations: synthesis, structures and mechanistic studies

Chemistry. 2012 Feb 6;18(6):1674-83. doi: 10.1002/chem.201101535. Epub 2012 Jan 2.

Abstract

The activation of the P=C bond of phosphaalkenes with electrophiles is investigated as a means to prepare and characterize unusual organophosphorus compounds. Treatment of RP=CHtBu (1a: R=tBu; 1b: R=1-adamantyl) with HOTf (0.5 equiv) affords diphosphiranium salts [RP-CHtBu-PR (CH(2)tBu)]OTf ([2a]OTf and [2b]OTf), each containing a three-membered P(2)C ring. In contrast, the addition of MeOTf (0.5 equiv) to either 1a or 1b affords diphosphetanium salts [RP-CHtBu-P(Me)R-CHtBu]OTf ([3a]OTf and [3b]OTf) containing four-membered P(2)C(2) heterocycles. The phosphenium triflate [tBuP(CH(2)tBu)]OTf ([5a]OTf) and methylenephosphonium triflate [tBu(Me)P=CHtBu]OTf ([7a]OTf) are identified spectroscopically as intermediates in the formation of [2a](+) and [3a](+), respectively. The phosphenium triflate intermediate can be trapped with 2-butyne to afford phosphirenium salt [MeC=CMe-tBuPCH(2)tBu]OTf ([6a]OTf). Treatment of diphosphetanium [3a]OTf with an excess MeOTf affords [Me(2)P-CHtBu-PMetBu-CHtBu](OTf)(2) ([4a](OTf)(2)), a compound containing a diphosphetanium dication. The molecular structures are reported for [2a]OTf, [2b][H(OTf)(2)], [3a]I, [3b]I, [4a](OTf)(2), and [6a]OTf.