μ-Calpain-mediated deregulation of cardiac, brain, and kidney NCX1 splice variants

Cell Calcium. 2012 Feb;51(2):164-70. doi: 10.1016/j.ceca.2011.12.006. Epub 2011 Dec 30.

Abstract

μ-Calpain is a Ca(2+)-activated protease abundant in mammalian tissues. Here, we examined the effects of μ-calpain on three alternatively spliced variants of NCX1 using the giant, excised patch technique. Membrane patches from Xenopus oocytes expressing either heart (NCX1.1), kidney (NCX1.3), or brain (NCX1.4) variants of NCX1 were exposed to μ-calpain and their Na(+)-dependent (I(1)) and Ca(2+)-dependent (I(2)) regulatory phenotypes were assessed. For these exchangers, I(1) inactivation is evident as a Na(+)(i)-dependent decay of peak outward currents whereas I(2) regulation manifests as outward current activation by micromolar Ca(2+)(i) concentrations. Notably, with NCX1.1 and NCX1.4 but not in NCX1.3, higher Ca(2+)(i) levels alleviate I(1) inactivation. Our results show that (i) μ-calpain selectively ablates Ca(2+)-dependent (I(2)) regulation leading to a constitutive activation of exchange current, (ii) μ-calpain has much smaller effects on Na(+)-dependent (I(1)) regulation, produced by a slight destabilization of the I(1) state, and (iii) Ca(2+)-dependent regulation (I(2)) and Ca(2+)-mediated alleviation of I(1) appear to be functionally distinct mechanisms, the latter of which is left largely intact after μ-calpain treatment. The ability of μ-calpain to selectively and constitutively activate Na(+)-Ca(2+) exchange currents may have important pathophysiological implications in tissue where these splice variants are expressed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing / physiology*
  • Animals
  • Brain / metabolism*
  • Calpain / genetics
  • Calpain / metabolism*
  • Dogs
  • Kidney / metabolism*
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism*
  • Myocardium / metabolism*
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Organ Specificity / physiology
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Sodium-Calcium Exchanger / genetics
  • Sodium-Calcium Exchanger / metabolism*
  • Xenopus laevis

Substances

  • Muscle Proteins
  • Nerve Tissue Proteins
  • Protein Isoforms
  • Sodium-Calcium Exchanger
  • sodium-calcium exchanger 1
  • Calpain