Assessing the neurotoxic effects of palytoxin and ouabain, both Na⁺/K⁺-ATPase inhibitors, on the myelinated sciatic nerve fibres of the mouse: an ex vivo electrophysiological study

Toxicon. 2012 Mar 1;59(3):416-26. doi: 10.1016/j.toxicon.2011.12.007. Epub 2011 Dec 20.

Abstract

Palytoxin (PlTX) is a marine toxin originally isolated from the zoantharians of the genus Palythoa. It is considered to be one of the most lethal marine toxins that block the Na⁺/K⁺-ATPase. This study was designed to investigate the acute effects of PlTX and ouabain, also an Na⁺/K⁺-ATPase blocker, on the mammalian peripheral nervous system using an ex vivo electrophysiological preparation: the isolated mouse sciatic nerve. Amplitude of the evoked nerve compound action potential (nCAP) was used to measure the proper functioning of the sciatic nerve fibres. The half-vitality time of the nerve fibres (the time required to inhibit the nCAP to 50% of its initial value: IT₅₀) incubated in normal saline was 24.5 ± 0.40 h (n = 5). Nerves incubated continuously in 50.0, 10.0, 1.0, 0.5, 0.250 and 0.125 nM of PlTX had an IT₅₀ of 0.06 ± 0.00, 0.51 ± 0.00, 2.1 ± 0.10, 8.9 ± 0.30, 15.1 ± 0.30 h, and 19.5 ± 0.20 h, respectively (n = 5, 3, 4, 4, 10). PlTX was extremely toxic to the sciatic nerve fibres, with a minimum effective concentration (mEC) of 0.125 nM (n = 5) and inhibitory concentration to 50% (IC₅₀) of 0.32 ± 0.08 nM (incubation time 24 h). Ouabain was far less toxic, with a mEC of 250.0 μM (n = 5) and IC₅₀ of 370.0 ± 18.00 μM (incubation 24.5 h). Finally, when the two compounds were combined--e.g. pre-incubation of the nerve fibre in 250.0 μM ouabain for 1 h and then exposure to 1.0 nM PlTX--ouabain offered minor a neuroprotection of 9.1-17.6% against PlTX-induced neurotoxicity. Higher concentrations of ouabain (500.0 μM) offered no protection. The mouse sciatic nerve preparation is a simple and low-cost bioassay that can be used to assess and quantify the neurotoxic effects of standard PlTX or PlTX-like compounds, since it appears to have the same sensitivity as the haemolysis of erythrocytes assay--the standard ex vivo test for PlTX toxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylamides / toxicity*
  • Animals
  • Anthozoa / chemistry
  • Biological Assay / methods
  • Cnidarian Venoms
  • Electrophysiological Phenomena
  • Evoked Potentials / drug effects
  • In Vitro Techniques
  • Inhibitory Concentration 50
  • Male
  • Mice
  • Nerve Fibers, Myelinated / drug effects
  • Neurotoxicity Syndromes / pathology
  • Ouabain / toxicity*
  • Sciatic Nerve / drug effects*
  • Sciatic Nerve / metabolism
  • Sodium-Potassium-Exchanging ATPase / antagonists & inhibitors*
  • Sodium-Potassium-Exchanging ATPase / metabolism

Substances

  • Acrylamides
  • Cnidarian Venoms
  • Ouabain
  • Sodium-Potassium-Exchanging ATPase
  • palytoxin