Preparation of rhenium nanoparticles via pulsed-laser decomposition and catalytic studies

J Colloid Interface Sci. 2012 Mar 1;369(1):164-9. doi: 10.1016/j.jcis.2011.12.015. Epub 2011 Dec 13.

Abstract

Rhenium (Re) nanoparticles have been synthesized by pulsed-laser decomposition of ammonium perrhenate (NH(4)ReO(4)) or dirhenium decacarbonyl (Re(2)(CO)(10)) in the presence of 3-mercaptopropionic acid (MPA) as capping agent, in both aqueous and organic media. Preliminary studies showed that the MPA-capped Re nanoparticles are capable of catalyzing the isomerization of 10-undecen-1-ol to internal alkenols via long chain migration of the C=C double bond at ca. 200°C. A one-pot synthesis of graphite-coated Re nanoparticles has also been achieved by pulsed-laser decomposition of Re(2)(CO)(10), due to photo-induced catalytic graphitization of the phenyl groups of PPh(3) on the surface of rhenium nanoparticles.