The relative role of climate change and human activities in the desertification process in Yulin region of northwest China

Environ Monit Assess. 2012 Dec;184(12):7165-73. doi: 10.1007/s10661-011-2488-6. Epub 2011 Dec 27.

Abstract

To overcome the shortcoming of existing studies, this paper put forward a statistical vegetation-climate relationship model with integrated temporal and spatial characteristics. Based on this model, we quantitatively discriminated on the grid scale the relative role of climate change and human activities in the desertification dynamics from 1986 to 2000 in Yulin region. Yulin region's desertification development occurred mainly in the southern hilly and gully area and its reverse in the northwest sand and marsh area. This spatial pattern was especially evident and has never changed thoroughly. From the first time section (1986-1990) to the second (1991-1995), the desertification was developing as a whole, and either in the desertification development district or in the reverse district human activities' role was always occupying an overwhelmingly dominant position (they were 98.7% and 101.4%, respectively), the role of climate change was extremely slight. From the second time section (1991-1995) to the third (1996-2000), the desertification process was reaching a state of stability, in the desertification development district the role of climate change was nearly equivalent to that of human activities (they were 46.2% and 53.8% separately), and yet in the desertification reverse district, the role of human activities came up to 119.0%, the role of climate change amounted to -19.0%. In addition, the relative role of climate change and human activities possessed great spatial heterogeneity. The above conclusion rather coincides with the qualitative analysis in many literatures, which indicates that this method has certain rationality and can be utilized as a reference for the monitoring and studying of desertification in other areas.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Climate Change*
  • Conservation of Natural Resources*
  • Environmental Monitoring
  • Environmental Pollution / analysis
  • Environmental Pollution / statistics & numerical data
  • Humans
  • Models, Theoretical