Multiple hydrogen bond interactions in the processing of functionalized multi-walled carbon nanotubes

ACS Nano. 2012 Jan 24;6(1):23-31. doi: 10.1021/nn203471t. Epub 2012 Jan 6.

Abstract

In a set of unprecedented experiments combining "bottom-up" and "top-down" approaches, we report the engineering of patterned surfaces in which functionalized MWCNTs have been selectively adsorbed on polymeric matrices as obtained by microlithographic photo-cross-linking of polystyrene polymers bearing 2,6-di(acetylamino)-4-pyridyl moieties (PS1) deposited on glass or Si. All patterned surfaces have been characterized by optical, fluorescence, and SEM imaging techniques, showing the local confinement of the CNTs materials on the polymeric microgrids. These results open new possibilities toward the controlled manipulation of CNTs on surfaces, using H-bonding self-assembly as the main driving force.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization / methods*
  • Hydrogen Bonding
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanotubes, Carbon / chemistry*
  • Nanotubes, Carbon / ultrastructure*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances
  • Nanotubes, Carbon