Temperature responses of dark respiration in relation to leaf sugar concentration

Physiol Plant. 2012 Apr;144(4):320-34. doi: 10.1111/j.1399-3054.2011.01562.x. Epub 2012 Jan 28.

Abstract

Changes in leaf sugar concentrations are a possible mechanism of short-term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature-response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature-response curves were obtained by increasing the leaf temperature at a rate of 1°C min⁻¹. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break-point at high temperature, where respiration starts to increase with a faster rate. The average break-point temperature (T(RD) ) was 48.6 ± 0.7°C at natural sugar concentration. Pulse-chase experiments with ¹⁴CO₂ demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature-response curve as respiration with a break-point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high-temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature-response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non-specifically protect respiratory membranes or may block the high-temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break-points in temperature curves of respiration in sugar-fed leaves.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbohydrate Metabolism / physiology*
  • Carbohydrates / analysis*
  • Carbon Dioxide / metabolism
  • Cell Respiration / physiology
  • Chlorophyll
  • Darkness
  • Fluorescence
  • Hot Temperature
  • Osmotic Pressure
  • Photosynthesis / physiology
  • Plant Leaves / metabolism
  • Plant Leaves / physiology
  • Plant Transpiration
  • Populus / metabolism
  • Populus / physiology*
  • Starch / metabolism
  • Stress, Physiological / physiology*
  • Trees / metabolism
  • Trees / physiology

Substances

  • Carbohydrates
  • Chlorophyll
  • Carbon Dioxide
  • Starch