A systems-level approach for metabolic engineering of yeast cell factories

FEMS Yeast Res. 2012 Mar;12(2):228-48. doi: 10.1111/j.1567-1364.2011.00779.x. Epub 2012 Jan 10.

Abstract

The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biotechnology
  • Industrial Microbiology
  • Metabolic Engineering*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Systems Biology*