Microscopic coexistence of superconductivity and magnetism in Ba(1-x)K(x)Fe2As2

Phys Rev Lett. 2011 Dec 2;107(23):237001. doi: 10.1103/PhysRevLett.107.237001. Epub 2011 Nov 29.

Abstract

It is widely believed that, in contrast to its electron-doped counterparts, the hole-doped compound Ba(1-x)K(x)Fe(2)As(2) exhibits a mesoscopic phase separation of magnetism and superconductivity in the underdoped region of the phase diagram. Here, we report a combined high-resolution x-ray powder diffraction and volume-sensitive muon spin rotation study of Ba(1-x)K(x)Fe(2)As(2) showing that this paradigm does not hold true in the underdoped region of the phase diagram (0≤x≤0.25). Instead we find a microscopic coexistence of the two forms of order. A competition of magnetism and superconductivity is evident from a significant reduction of the magnetic moment and a concomitant decrease of the magnetoelastically coupled orthorhombic lattice distortion below the superconducting phase transition.