Role of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) in bacterial heat resistance as a function of treatment medium pH

Int J Food Microbiol. 2012 Feb 15;153(3):358-64. doi: 10.1016/j.ijfoodmicro.2011.11.027. Epub 2011 Dec 3.

Abstract

This investigation aimed to determine the role of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) in heat resistance and the occurrence of sublethal injuries in cell envelopes of stationary-phase Escherichia coli BJ4 and Listeria monocytogenes EGD-e cells, respectively, as a function of treatment medium pH. Given that microbial death followed first-order inactivation kinetics (R(2)>0.95) the traditional D(T) and z values were used to describe the heat inactivation kinetics. Influence of rpoS deletion was constant at every treatment temperature and pH, making a ΔrpoS deletion mutant strain approximately 5.5 times more heat sensitive than its parental strain for every studied condition. Furthermore, the influence of the pH of the treatment medium on the reduction of the heat resistance of E. coli was also constant and independent of the treatment temperature (average z value=4.9°C) in both parental and mutant strains. L. monocytogenes EGD-e z values obtained at pH 7.0 and 5.5 were not significantly different (p>0.05) in either parental or the ∆sigB deletion mutant strains (average z value=4.8°C). Nevertheless, at pH 4.0 the z value was higher (z=8.4°C), indicating that heat resistance of both L. monocytogenes strains was less dependent on temperature at pH 4.0. At both pH 5.5 and 7.0 the influence of sigB deletion was constant and independent of the treatment temperature, decreasing L. monocytogenes heat resistance approximately 2.5 times. In contrast, the absence of sigB did not decrease the heat resistance of L. monocytogenes at pH 4.0. The role of RpoS in protecting cell envelopes was more important in E. coli (4 times) than SigB in L. monocytogenes (1.5 times). Moreover, the role of σ(S) in increasing heat resistance seems more relevant in enhancing the intrinsic resilience of the cytoplasmic membrane, and to a lesser extent, outer membrane resilience. Knowledge of environmental conditions related to the activation of alternative sigma factors σ(S) and σ(B) and their effects on heat resistance would help us to avoid and/or identify situations that increase bacterial stress resistance. Therefore, more efficient food preservation processes might be designed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Proteins / metabolism*
  • Bacterial Proteins / physiology
  • Cell Wall / metabolism
  • Escherichia coli / metabolism
  • Escherichia coli / physiology*
  • Food Preservation
  • Hot Temperature*
  • Hydrogen-Ion Concentration
  • Listeria monocytogenes / physiology*
  • Sigma Factor / metabolism*
  • Sigma Factor / physiology
  • Temperature

Substances

  • Bacterial Proteins
  • SigB protein, Bacteria
  • Sigma Factor
  • sigma factor KatF protein, Bacteria