CMM-RS potential for characterization of the properties of the halogen-bonded OC-Cl2 complex, and a comparison with hydrogen-bonded OC-HCl

J Phys Chem A. 2012 Feb 2;116(4):1213-23. doi: 10.1021/jp209870x. Epub 2012 Jan 23.

Abstract

Transitions associated with the vibrations ν₁, ν₁ + ν(b)¹, ν₁ + ν₅¹, and ν₁ + ν₅¹ - ν₅¹ of the complex OC···Cl₂ have been rovibrationally analyzed for several isotopologues involving isotopic substitutions in Cl₂. Spectra were recorded using a recently constructed near-infrared (4.34 to 4.56 μm), quantum-cascade laser spectrometer with cw supersonic slit jet expansion. Spectral analysis allowed precise determination of the ν₅¹ intermolecular vibration of OC-³⁵Cl₂ to be 25.977637(80) cm⁻¹. These results were incorporated with other previously determined data into a spectroscopic database for generation of a five-dimensional morphed potential energy surface. This compound-model morphed potential with radial shifting (CMM-RS) was then used to make more accurate predictions of properties of the OC-³⁵Cl₂ complex including D(e) = 544(5) cm⁻¹, D₀ = 397(5) cm⁻¹, ν₃ = 56.43(4) cm⁻¹, and ν(b)¹ = 85.43(4) cm⁻¹. The CMM-RS potential determined for OC-Cl₂ was also used to compare quantitatively many of the inherent properties of this non-covalent halogen bonded complex with those of the closely related hydrogen-bonded complex OC-HCl, which has a similar dissociation energy D₀. We found that in the ground state, the CO bending amplitude is larger in OC-Cl₂ than in OC-HCl.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon / chemistry*
  • Chlorides / chemistry*
  • Hydrochloric Acid / chemistry*
  • Hydrogen Bonding
  • Oxygen / chemistry*
  • Quantum Theory

Substances

  • Chlorides
  • Carbon
  • Hydrochloric Acid
  • Oxygen