Alkoxy-1,3,5-triazapentadien(e/ato) copper(II) complexes: template formation and applications for the preparation of pyrimidines and as catalysts for oxidation of alcohols to carbonyl products

Chemistry. 2012 Jan 16;18(3):899-914. doi: 10.1002/chem.201101688. Epub 2011 Dec 14.

Abstract

Template combination of copper acetate (Cu(AcO)(2)⋅H(2)O) with sodium dicyanamide (NaN(C≡N)(2), 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH(2), 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)-(2,4-alkoxy-1,3,5-triazapentadienato) complexes [Cu{NH=C(OR)NC(OR)=NH}(2)] (R = Me (1), Et (2), nPr (3), iPr (4), CH(2)CH(2)OCH(3) (5)) or cationic copper(II)-(2-alkoxy-4-amino-1,3,5-triazapentadiene) complexes [Cu{NH=C(OR)NHC(NH(2))=NH}(2)](AcO)(2) (R = Me (6), Et (7), nPr (8), nBu (9), CH(2)CH(2)OCH(3) (10)), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6-10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH=C(OR)NC(NH(2))=NH}(2)] 11-15. Reaction of 11, 12 or 15 with acetyl acetone (MeC(=O)CH(2)C(=O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NCNHC(=NH)OR, whereas the same treatment of the cationic complexes 6, 7 or 10 allows the corresponding metal-free triazapentadiene salts {NH(2)C(OR)=NC(NH(2))=NH(2)}(OAc) to be isolated. The alkoxy-1,3,5-triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical-mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent-free microwave-assisted synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h(-1)).