Genetic analysis of IP3 and calcium signalling pathways in C. elegans

Biochim Biophys Acta. 2012 Aug;1820(8):1253-68. doi: 10.1016/j.bbagen.2011.11.009. Epub 2011 Nov 29.

Abstract

Background: The nematode, Caenorhabditis elegans is an established model system that is particularly well suited to genetic analysis. C. elegans is easily manipulated and we have an in depth knowledge of many aspects of its biology. Thus, it is an attractive system in which to pursue integrated studies of signalling pathways. C. elegans has a complement of calcium signalling molecules similar to that of other animals.

Scope of review: We focus on IP3 signalling. We describe how forward and reverse genetic approaches, including RNAi, have resulted in a tool kit which enables the analysis of IP3/Ca2+ signalling pathways. The importance of cell and tissue specific manipulation of signalling pathways and the use of epistasis analysis are highlighted. We discuss how these tools have increased our understanding of IP3 signalling in specific developmental, physiological and behavioural roles. Approaches to imaging calcium signals in C. elegans are considered.

Major conclusions: A wide selection of tools is available for the analysis of IP3/Ca2+ signalling in C. elegans. This has resulted in detailed descriptions of the function of IP3/Ca2+ signalling in the animal's biology. Nevertheless many questions about how IP3 signalling regulates specific processes remain.

General significance: Many of the approaches described may be applied to other calcium signalling systems. C. elegans offers the opportunity to dissect pathways, perform integrated studies and to test the importance of the properties of calcium signalling molecules to whole animal function, thus illuminating the function of calcium signalling in animals. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.

Publication types

  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics*
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans / physiology
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism
  • Calcium Signaling*
  • Inositol 1,4,5-Trisphosphate Receptors / genetics
  • Inositol 1,4,5-Trisphosphate Receptors / metabolism
  • Inositol Phosphates / physiology*
  • Mutagenesis
  • Phenotype
  • Protein Interaction Maps
  • RNA Interference
  • Reverse Genetics

Substances

  • Caenorhabditis elegans Proteins
  • Inositol 1,4,5-Trisphosphate Receptors
  • Inositol Phosphates
  • inositol 3,4,5-trisphosphate