A metal-organic framework with highly polar pore surfaces: selective CO2 adsorption and guest-dependent on/off emission properties

Chemistry. 2012 Jan 2;18(1):237-44. doi: 10.1002/chem.201101183. Epub 2011 Dec 5.

Abstract

A 3D porous Zn(II) metal-organic framework {[Zn(2)(H(2)dht)(dht)(0.5)(azpy)(0.5)(H(2)O)]·4H(2)O} (1; H(2)dht=dihydroxyterphthalate, azpy=4,4'-azobipyridine) has been synthesised by employing 2,5-dihydroxyterephthalic acid (H(4)dht), a multidentate ligand and 4,4'-azobipyridine by solvent-diffusion techniques at room temperature. The as-synthesised framework furnishes two different types of channels: one calyx-shaped along the [001] direction and another rectangle-shaped along the [101] direction occupied by guest water molecules. The dehydrated framework, {[Zn(2)(H(2)dht)(dht)(0.5)(azpy)(0.5)]} (1') provides 52.7% void volume to the total unit-cell volume. The pore surfaces of 1' are decorated with unsaturated Zn(II) sites and pendant hydroxyl groups of H(2)dht linker, thereby resulting in a highly polar pore surface. The dehydrated framework 1' shows highly selective adsorption of CO(2) over other gases, such as N(2), H(2), O(2) and Ar, at 195 K. Photoluminescence studies revealed that compound 1 exhibits green emission (λ(max)≈530 nm) on the basis of the excited-state intramolecular proton-transfer (ESIPT) process of the H(2)dht linker; no emission was observed in dehydrated solid 1'. Such guest-induced on/off emission has been correlated to the structural transformation and concomitant breaking and reforming of the OH···OCO hydrogen-bonding interaction in the H(2)dht linker in 1'/1.