Sensory axon regeneration: rebuilding functional connections in the spinal cord

Trends Neurosci. 2012 Mar;35(3):156-63. doi: 10.1016/j.tins.2011.10.006. Epub 2011 Nov 30.

Abstract

Functional regeneration within the adult spinal cord remains a formidable task. A major barrier to regeneration of sensory axons into the spinal cord is the dorsal root entry zone. This region displays many of the inhibitory features characteristic of other central nervous system injuries. Several experimental treatments, including inactivation of inhibitory molecules (such as Nogo and chondroitin sulfate proteoglycans) or administration of neurotrophic factors (such as nerve growth factor, neurotrophin3, glial-derived neurotrophic factor and artemin), have been found to promote anatomical and functional regeneration across this barrier. However, there have been relatively few experiments to determine whether regenerating axons project back to their appropriate target areas within the spinal cord. This review focuses on recent advances in sensory axon regeneration, including studies assessing the ability of sensory axons to reconnect with their original synaptic targets.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Axons / physiology*
  • Ganglia, Spinal / injuries
  • Humans
  • Nerve Crush
  • Nerve Regeneration / physiology*
  • Neural Pathways / physiology
  • Sensory Receptor Cells / physiology*
  • Spinal Cord / growth & development
  • Spinal Cord / physiology*
  • Spinal Cord Injuries / pathology
  • Up-Regulation