Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation

Antioxid Redox Signal. 2012 Mar 15;16(6):471-5. doi: 10.1089/ars.2011.4454. Epub 2012 Jan 4.

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have become recognized as second messengers for initiating and/or regulating vital cellular signaling pathways, and they are known also as deleterious mediators of cellular stress and cell death. ROS and RNS, and their cross products like peroxynitrite, react primarily with cysteine residues whose oxidative modification leads to functional alterations in the proteins. In this Forum, the collection of six review articles presents a perspective on the broad biological impact of cysteine modifications in health and disease from the molecular to the cellular and organismal levels, focusing in particular on reversible protein-S-glutathionylation and its central role in transducing redox signals as well as protecting proteins from irreversible cysteine oxidation. The Forum review articles consider the role of S-glutationylation in regulation of the peroxiredoxin enzymes, the special redox environment of the mitochondria, redox regulation pertinent to the function of the cardiovascular system, mechanisms of redox-activated apoptosis in the pulmonary system, and the role of glutathionylation in the initiation, propagation, and treatment of neurodegenerative diseases. Several common themes emerge from these reviews; notably, the probability of crosstalk between signaling/regulation mechanisms involving protein-S-nitrosylation and protein-S-glutathionylation, and the need for quantitative analysis of the relationship between specific cysteine modifications and corresponding functional changes in various cellular contexts.

Publication types

  • Editorial

MeSH terms

  • Cysteine / metabolism*
  • Glutathione / metabolism*
  • Humans
  • Oxidation-Reduction
  • Oxidative Stress*
  • Protein Processing, Post-Translational*
  • Proteins / chemistry*
  • Proteins / metabolism*
  • Signal Transduction*

Substances

  • Proteins
  • Glutathione
  • Cysteine