Virtual screening of 2,3-disubstituted-4(3H)-quinazolinones possessing benzenesulfonamide moiety for COX-2 inhibitor

Bioinformation. 2011;7(5):246-50. doi: 10.6026/97320630007246. Epub 2011 Oct 31.

Abstract

COX inhibitors which selectively inhibits the inducible COX-2 is an oenzyme that causes inflammation. They are clinically effective anti-inflammatory agents with less gastrointestinal and renal toxicity. However, they lack anti-thrombotic activity and hence lead to increased incidences of adverse cardiovascular trombotic events such as myocardial infarction. Therefore, there is still a need to develop better therapeutic effect and tolerability COX-2 inhibitor. The majority of COX-2 inhibitors are diaryl heterocycles. For optimum COX-2 selectivity and inhibitory potency a -SO(3)CH(3) or a- SO(2)NH(2) substituent at the para-position of phenyl ring was essential. A wide variety of heterocycles can serve as central ring system of the diaryl heterocycles structures. We report the screening of various 2,3-disubstituted-4(3H)-quinazolinones possessing benzenesulfonamide moiety, directly or indirectly bound to the ring system, using the Protein-Ligand ANT System (PLANTS) docking software against the COX-2 enzyme. Various molecular structures of ligands were docked and scored to identify structurally similar ligands to SC-558 (reference ligand) in binding interaction to COX-2 binding site. The results show that 2,3-disubstituted-4(3H)-quinazolinones possess pbenzenesulfonamide moiety at C-2, and phenyl moiety at N-3 binds directly or indirectly to the ring system with high binding affinity. The docked ligand has orientations similar to that observed with SC-558 satisfying Lipinski's rule of five.

Keywords: 4(3H)-quinazolinonebenzenesulfonamide; PLANTS; cyclooxygenase; virtual screening.